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Influence of Gaussian noise on the correlation exponent
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Self-similarity of fractal point sets is broken if the points are contaminated by measurement noise. Different
approaches have been taken to calculate the influence of Gaussian noise on the scaling of interpoint distances.
We bring the results into a form which makes a comparison possible. Although the approaches use different
norms and ways to quantify the scaling behavior, we find that the influence of noise leads to similar deviations
from the pure scaling behavidiS1063-651X97)07307-§

PACS numbes): 05.45+b

I. INTRODUCTION o . .. Lo
C(r)=f de dyu(x) w(Y)K([ly=x]/r), 1)
The geometry of fractals has been subject to extensive
mathematical studies, and there is ample empirical evidenoghere usually the kernel functiok(x) is taken to be the
for the relevance of fractal geometry in natyrd. Math-  Heaviside step functio® (1—x). Then,C(r) is simply the
ematical fractals show self-similarity in the limit of small fraction of pairs of points with a distandén some norm
length scales. Such a limit cannot be taken in experimentamaller thanr. For a fractal measure and in the limit that
observations due to the finite resolution of any measurememt—0, C(r) scales as a power lav(r)«r®. The scaling
device. However, approximate self-symmetry often extende@éxponent is also called the correlation dimensiam.is a
to small but finite length scales. It is therefore interesting toower estimator of the information dimension, which is theo-
study how self-similarity is broken if the resolution is limited retically more interesting, and of the Hausdorff dimension of
by measurement noise. In Ref2-6], this question has been the supprt ofu.
addressed for the particular case of the scaling exponent of The probability densityn(r) for the interpoint distance
the distribution of interpoint distances, known as thecan be obtained by taking the derivative ©fr), yielding
Grassberger-Procaccia correlation integral, under the asyr)=dC(r)/drxr¢ . Another way to express the same
sumption that an infinite number of measurements is availscaling behavior is by giving the local slope of a double
able, subject to Gaussian independent measurement nOiségarithmic plot of C(r):
While Refs.[2,4—6 consider the Euclidean, dr?, norm,
Ref. [3] uses the maximum, ok”, norm and makes the d rn(r)
further assumption that the fractal measure arises as an at- D(r)= mlnC(r)z Cc(r)’ @
tractor of a dynamical system and is given by a time delay
reconstruction from a time series. In this paper we will com-D(r) can be seen as a scale dependent effedlivension
ment on and compare these works. In particular, we willThe actual correlation dimension is obtained as the limit
guote the different formulas in a form which makes it pos-lim, _oD(r).
sible to compare the curves obtained. For the usual correla- |n Ref.[4], a version of the correlation integral is used in
tion integral in the Euclidean case, Rdf3,6] make the most which the hard kernel function is replaced by a Gaussian,
specific statement by giving the functional form of the con-exp(—x?/4):
taminated scaling function of a noisy fractal. Although the
derivation uses different arguments, both results coincide. - T P [
The approach of Ref5] is only valid for length scales larger Co(r)= f dxf dyp(x)u(y)e” " - 3)
than the noise level. Thus for the theoretical understanding
of the influence of noise on pair distributions, the more genSmooth kernel correlation integrals are discussed in [B&f.
eral result given in Refd2,6] seems preferable. where it is also shown that & does indeed scale as a power
law, then so doe€?, with the same power. In the case of the
Euclidean norm, the Gaussian kernel allows for the convolu-
Il. SCALING OF PAIR DISTRIBUTIONS tion of the kernel function and the Gaussian noise distribu-

One of the most popular quantities to characterize Ob:uon.
served fractal distributions is the Grassberger-Procaccia cor-
relation integral[7]. A continuum definition of the correla-
tion integralC(r) of a distribution,u(f) at length scale is If in an experiment the pair distribution has to be esti-

mated from a large collection of points which are known

only up to Gaussian measurement noise, we will have to
*Permanent address: Physics Department, University of Wuppe®@ccount for the fact that itself is not available but only the
tal, D-42097 Wuppertal, Germany. convolution of u and the noise distribution. Therefore we

lIl. SCALING FUNCTIONS AND NOISE
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expect that at small length scales the scaling is dominated by _ _ d
the noise,C(r)er9, whered is the dimension of the space DH(r)=Dn(n+——= erf(ri2o) 6)

the set is embedded in. For largetthere may be a region oNT

where the original scalin€(r)er® is approximately valid. This formula provides a convenient means to evaluate the
The modified scaling function&(r), C(r), or D(r) are €ffect of noise on the scaling of a distribution. It has been
computed under different conditions in Ref&—6]. Due to used in particular to determine the noise level in time series
the different assumptions, the results are not supposed to g@ta[S,lt)].

identical but the differences should not be dramatic. Unfor-

tunately, these references state their results in different forms

and cannot be immediately compared. Referef@lk be- If the Euclidean norm is used, the contaminated scaling

comes most useful whe(r) is evaluated for different em- function can be derived assuming power law scaling of the

. . L= .~ unperturbed distances. The derivation is quite elegant if the
bedding dimension<C(r) can also be givem(r), however,  Gayssian kernel correlation integ@¥(r), Eq. (3), is used.

only for integera. Reference2] gives C(r) and Ref.[6] For the usual hard kernel the algebra is more complicated
n(r) as expressions involving a transcendental functionand the result involves a special function.
Both expressions can indeed be related by taking a deriva-

tive. Given bothC(r) andn(r), D(r) is also known. Refer- _ . o
ence[5] gives a formula for a corrected length such that Diks [4] observes that the Gaussian kernel correlation in-
tegral can be seen as a convolution of the probability distri-

gution ﬁ()?) with a Gaussian of width. The noisy distribu-
tion u(x) itself, however, depends on the true measure

V. EUCLIDEAN NORM

A. Gaussian kernel

scaling ofC(r) is restored. This is a very convenient way to
express the result for practical applications. For the purpos

of comparison, we will here use it to exprass, andD as %) th h i ith th ise distributi
. ~ . : u(X) through a convolution wi e noise distribution, a
functions of C. Reference[4] gives the Gaussian kernel Gaussian of widthr. Under the assumption th&(r)ocr ®

equivalent toC(r) which is easily differentiated to yield for the noise-free distribution, it is found in Ré#] that
D(r) andn(r). While the expressions for the Gaussian ker-

d
nel correlation integral are by far the easiest to handle, the CY(r)= r (6)
B . - (N G2y g2ya@=are:
estimation ofC9(r) from a time series is somewhat more o
tedious.

In order to compare to the other approaches let us quote this
result in two alternative forms. Differentiation with respect

IV. MAXIMUM NORM tor yields
. . Lo rd-1 ar?+do?
Here and in the following, thel superscript indicates the use Y1) . @)
of the maximum norm. (r2+g?)d-a2 24 5

If the interpoint distances are calculated using the maxi- ~ ~
mum norm a%d the point set is reconstructed fgr'om a timel N€ logarithmic derivativad9(r) =[d/(dInr)]inC%(r) takes a
series, Ref[3] derives an expression for the noise contribu-partICUIarIy simple form:
tion to the correlation integral. If the embedding dimension _ ar?+dg?
is sufficiently much above that necessary for a proper em- DI(r)=
bedding, the correlation integral can be split multiplicatively
into one contribution containing signal and noise, and onerpe crossover fronD9(r)~d for r<o to DI(r)~a for
containing noise only. The latter can be calculated analytiy s  is evident.
cally when the noise distribution is given. The result for

®

r+g2 -

Gussian noise of standard deviations B. Hard kernel
_ n For the usual correlation integral, the convolution of the
CD(r)=C§(r)[\/Eerf(r/&r)]d‘m. (4) kernel and the noise distribution cannot be carried out in

such an elegant way. However, Smigt] was able to derive

Here and in the following, thel superscript indicates the use @ formula for the noise contaminated correlation integral us-
of the maximum norm. ing local linearizations of the system equations. We will not

The result is valid for the case where a reconstruction iféP€at here the derivation but quote the final result. Assum-
m dimensions yields a faithful embedding. Formally, thising C(r)=r¢ it reads

requiresm>2a but typically, m>« is sufficient. For the T((a+1)/2) d—a d+2 r2
case of the maximum norm we have not been able to furthe|C°(r)=m(2<r)“*drd — T;— 252/
evaluateEE(r) which contains mixed signal and noise con- (9)

tributions. The derivative oE”(r), n™(r) does not allow hereM(a.b:2) is th fuent h i K
for the isolation of a pure noise component, except for thé?1€reM(a.b:z) is the confluent hypergeometric, or Kum-
mer’s, function. Here and in the following, ttie superscript

Engusual mcase thata=m is integer and. ) therefore indicates the use of the Euclidean norm.

Cm(_r)ocr . On the other hand, thg decomposition bef:omes Oltmans and Verheijer{6] analyze the influence of
additive and thus more useful in the representation agayssian isotropic noise on the interpoint distances, rather
DY(r). The result then reads than the integrated distribution. The expression for the scal-
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FIG. 1. Double logarithmic plot of9r) (solid) and n°(r)
(dashed for d=4,a=2.6 (upper two curvesand ford=5,a=1.4
(lower two curves

ing functionn °(r) of the noisy interpoint distances is ob-
tained by combining Eq18) and(19) of Ref. [6]:

~, . T(al2) wedod— d—a d rz)
n (r)—ma(ZU) r lM(T,E,_m .
(10

Using the recursion relations for Kummer’s functipgs.
(13.4.9—(13.4.7 in Ref. [9]], one finds thaih °(r) in Eq.
(10) is indeed the derivative &&°(r) in Eq.(9). This is very
satisfactory since Eq9) and Eq.(10) have been derived by
very different means.

Combining Egs(9) and (10) and using Kummer's trans-
formation[Eq. (13.1.27 in Ref.[9] ], we get quite a compact

expression foD°(r):

M (al2d/2;r%1452)

D) = O Car 272, (d+ 2)/2;r FAcD)

13

Kugiumtzis[5] gives a correction formula for the length
scaler to be used in the presence of Gaussian nd@ige) is

D(n)
w

2t
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FIG. 2. Plot in linear scale d(r) (dotted, D9(r) (solid), and
D °(r) (dashedl Further,D>(C) is plotted versus~(C) as a para-
metric function ofC (dashed-dotted All curves are computed for
d=4,a=2. The result derived from Ref5], D>, coincides with
D °(r) for large enough.

VI. COMPARISON

When comparing the different results, we should observe
that the length scales accessed by the different approaches at
a given value of are not quite the same and cannot be made
exactly equal. For a better comparison, one may want to use
kernel functions of the same root mean squared variance.
The Gaussian kernel used above has wi@hwhile the hard
kernel has width /3. Further, the hard kernel in the maxi-
mum norm covers a hypercube whereas in the Euclidean
norm it only covers a sphere. The corresponding rescaling
would depend on the attractor dimension.

Let us first show exemplary curves(r) andn °(r) for
the Euclidean norm, which are available analytically for all
d and a. Figure 1 contains a double logarithmic plot of
n(r) for d=4,0=2.6 and ford=5,a=1.4. In order to cor-
rect for the different kernel width:;9(r) has been shifted

left by \2 andn®°(r) right by 3. As expected, the asymp-
totics are the same but the crossover region around the noise

then supposed to show the proper scaling with the correctelével is different.

r’. The formula is derived by accounting for those points

For certain particulatnonfracta) values ofd and «, we

which escape from a neighborhood due to the noise. Certaigan calculate analytical curves for all three casesGor)

approximationgnamely, exchanging the expectation opera-

tor with point counting are made which assume thats at
least of the order of. Therefore the implication of the result
for the present work is less general than REEs6]. Let us

andD(r). Ford=4,a=2, we obtain the following formulas
for D(r):

assume that power law scalir@(r)«r® is restored by the - or e "M’
correction, such that for the measured correlation sum, DY(r)=2+ —\/— erf(T’
~ . . o\ o)
C(r)ecr’® holds. Then we can rewrite EE) in Ref.[5] and
obtain
2r%+ 42 2r2(1—e "%
aa 2=20a_ 4 DYr)=—5—>, D°(n= 7
r:dC +(4d_1)(0' CY+ o ) r2—|—0'2 ! r2_40_2(1_e—r /40’)’

= 12
d(c2la+ 20_2)3/2 ( )

Note that Ref[5] uses thed-scaled Euclidean norm, which

(13

Further, the result of Ref5] can be used to obtain a para-

will be accounted for when the results are compared. Fronmetric function(r~(C),D~(C)):

Eq. (12) we can comput&~ andD~ as functions of. The

expressions are lengthy and not very instructive. They are

therefore not given here, except for a particular choicéd of
and «, see Eq(14) below.

>

= 4C?+150%C+ 150"

r =
4(C+20?)%2

; (14
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_ _ 4C34+ 2352024 4504C + 3000 As we have mentioned before, the length scales cannot be
D~ (C)= compared directly for the different approaches. In particular,
the reasoning in this paper does not take into account that
The curves are shown in Fig. 2. Again, the different kernels'caling is both limited by noise from bglow and by the finite
widths are accounted for. On a two dimensional point set, th«S’Xte,nt of the set from ab_oyg. Thus neither the formulas nor
ratio of the volumes covered by a box of radiuand a circle the figures allow for a definitive statement as to how strongly
of the same radius is #/ Therefored2(r) is shifted left by the different ways of estimating the correlation integral are

) = = ) affected by noise.
4y2/m. since D7(C) has been calculated with the approaches allow for the estimation of the noise level,

d-scaled Euclidean norm, the curve has been shifted right biots 2 4 6] allow for the simultaneous determination of the
an additional factor ofyd=2 for comparison. Note that qice jevel and the scaling exponent by a nonlinear function

D~(C) is only supposed to be valid for>o, and, in fact,  fit. While in the case of the usual hard kernel the function to
diverges forC— 0 (at finiter). For large enough, however,  be fitted is rather complicated, the computation of the Gauss-
the agreement with the general resDIt(r) is very good, ian kernel correlation integral from a time series is more
as expected. tedious and computer time consuming. Refereffek re-
quires an estimate of the noise variance but then yields a
VIl. CONCLUSION convenient correction scheme 6(r). The resul{3] for the
maximum norm allows for the determination of the noise
We have brought together the results of different ap{evel but not for a direct correction of a dimension estimate.
proaches which compute the influence of Gaussian noise ofn attractive alternative is to perform a nonlinear noise re-

the correlation integral. Although different norms and differ- quction ste11] in order to recover the correct scaling be-
ent definitions of the correlation integral were used, the reqayior.

sulting curves are very similar. This is quite obvious for the
asymptotic behavior for length scales much larger and much
smaller than the noise level but it is also found for the cross-

4C3+ 175%C%+15¢C
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