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Influence of Gaussian noise on the correlation exponent

Thomas Schreiber*
Max Planck Institute for Physics of Complex Systems, Bayreuther Strasse 40, D-01187 Dresden, Germany

~Received 20 March 1997!

Self-similarity of fractal point sets is broken if the points are contaminated by measurement noise. Different
approaches have been taken to calculate the influence of Gaussian noise on the scaling of interpoint distances.
We bring the results into a form which makes a comparison possible. Although the approaches use different
norms and ways to quantify the scaling behavior, we find that the influence of noise leads to similar deviations
from the pure scaling behavior.@S1063-651X~97!07307-8#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The geometry of fractals has been subject to exten
mathematical studies, and there is ample empirical evide
for the relevance of fractal geometry in nature@1#. Math-
ematical fractals show self-similarity in the limit of sma
length scales. Such a limit cannot be taken in experime
observations due to the finite resolution of any measurem
device. However, approximate self-symmetry often exten
to small but finite length scales. It is therefore interesting
study how self-similarity is broken if the resolution is limite
by measurement noise. In Refs.@2–6#, this question has bee
addressed for the particular case of the scaling exponen
the distribution of interpoint distances, known as t
Grassberger-Procaccia correlation integral, under the
sumption that an infinite number of measurements is av
able, subject to Gaussian independent measurement n
While Refs. @2,4–6# consider the Euclidean, orL2, norm,
Ref. @3# uses the maximum, orL`, norm and makes the
further assumption that the fractal measure arises as a
tractor of a dynamical system and is given by a time de
reconstruction from a time series. In this paper we will co
ment on and compare these works. In particular, we w
quote the different formulas in a form which makes it po
sible to compare the curves obtained. For the usual corr
tion integral in the Euclidean case, Refs.@2,6# make the most
specific statement by giving the functional form of the co
taminated scaling function of a noisy fractal. Although t
derivation uses different arguments, both results coinc
The approach of Ref.@5# is only valid for length scales large
than the noise level. Thus for the theoretical understand
of the influence of noise on pair distributions, the more g
eral result given in Refs.@2,6# seems preferable.

II. SCALING OF PAIR DISTRIBUTIONS

One of the most popular quantities to characterize
served fractal distributions is the Grassberger-Procaccia
relation integral@7#. A continuum definition of the correla
tion integralC(r ) of a distributionm(xW ) at length scaler is
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C~r !5E dxWE dyWm~xW !m~yW !K~ iyW2xW i /r !, ~1!

where usually the kernel functionK(x) is taken to be the
Heaviside step functionQ(12x). Then,C(r ) is simply the
fraction of pairs of points with a distance~in some norm!
smaller thanr . For a fractal measure and in the limit th
r→0, C(r ) scales as a power law,C(r )}r a. The scaling
exponenta is also called the correlation dimension.a is a
lower estimator of the information dimension, which is the
retically more interesting, and of the Hausdorff dimension
the supprt ofm.

The probability densityn(r ) for the interpoint distance
can be obtained by taking the derivative ofC(r ), yielding
n(r )5dC(r )/dr}r a21. Another way to express the sam
scaling behavior is by giving the local slope of a doub
logarithmic plot ofC(r ):

D~r !5
d

dlnr
lnC~r !5

rn~r !

C~r !
. ~2!

D(r ) can be seen as a scale dependent effectivedimension.
The actual correlation dimension is obtained as the li
limr→0D(r ).

In Ref. @4#, a version of the correlation integral is used
which the hard kernel function is replaced by a Gaussi
exp(2x2/4):

Cg~r !5E dxWE dyWm~xW !m~yW !e2iyW2xW i2/4r2. ~3!

Smooth kernel correlation integrals are discussed in Ref.@8#,
where it is also shown that ifC does indeed scale as a pow
law, then so doesCg, with the same power. In the case of th
Euclidean norm, the Gaussian kernel allows for the convo
tion of the kernel function and the Gaussian noise distri
tion.

III. SCALING FUNCTIONS AND NOISE

If in an experiment the pair distribution has to be es
mated from a large collection of points which are know
only up to Gaussian measurement noise, we will have
account for the fact thatm itself is not available but only the
convolution ofm and the noise distribution. Therefore w
r-
274 © 1997 The American Physical Society
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expect that at small length scales the scaling is dominate
the noise,C̃(r )}r d, whered is the dimension of the spac
the set is embedded in. For largerr there may be a region
where the original scalingC̃(r )}r a is approximately valid.
The modified scaling functionsñ(r ), C̃(r ), or D̃(r ) are
computed under different conditions in Refs.@2–6#. Due to
the different assumptions, the results are not supposed t
identical but the differences should not be dramatic. Unf
tunately, these references state their results in different fo
and cannot be immediately compared. Reference@3# be-
comes most useful whenD̃(r ) is evaluated for different em
bedding dimensions.C̃(r ) can also be given,ñ(r ), however,
only for integera. Reference@2# gives C̃(r ) and Ref.@6#

ñ(r ) as expressions involving a transcendental functi
Both expressions can indeed be related by taking a der
tive. Given bothC̃(r ) and ñ(r ), D̃(r ) is also known. Refer-
ence@5# gives a formula for a corrected lengthr 8 such that
scaling ofC̃(r ) is restored. This is a very convenient way
express the result for practical applications. For the purp
of comparison, we will here use it to expressr , n, andD̃ as
functions of C̃. Reference@4# gives the Gaussian kerne
equivalent toC̃(r ) which is easily differentiated to yield
D̃(r ) and ñ(r ). While the expressions for the Gaussian k
nel correlation integral are by far the easiest to handle,
estimation ofC̃g(r ) from a time series is somewhat mo
tedious.

IV. MAXIMUM NORM

Here and in the following, theh superscript indicates the us
of the maximum norm.

If the interpoint distances are calculated using the ma
mum norm and the point set is reconstructed from a ti
series, Ref.@3# derives an expression for the noise contrib
tion to the correlation integral. If the embedding dimensi
is sufficiently much above that necessary for a proper e
bedding, the correlation integral can be split multiplicative
into one contribution containing signal and noise, and o
containing noise only. The latter can be calculated anal
cally when the noise distribution is given. The result f
Gussian noise of standard deviations is

C̃h~r !5C̃m
h~r !@A2erf~r /2s!#d2m. ~4!

Here and in the following, theh superscript indicates the us
of the maximum norm.

The result is valid for the case where a reconstruction
m dimensions yields a faithful embedding. Formally, th
requiresm.2a but typically, m.a is sufficient. For the
case of the maximum norm we have not been able to fur
evaluateC̃m

h(r ) which contains mixed signal and noise co

tributions. The derivative ofC̃h(r ), ñh(r ) does not allow
for the isolation of a pure noise component, except for
unusual case thata5m is integer and therefore
C̃m

h(r )}rm. On the other hand, the decomposition becom
additive and thus more useful in the representation
D̃h(r ). The result then reads
by

be
-
s

.
a-

se

-
e

i-
e
-

-

e
i-

n

er

e

s
s

D̃h~r !5D̃m
h~r !1

d2m

sAp

re2r2/4s2

erf~r /2s!
. ~5!

This formula provides a convenient means to evaluate
effect of noise on the scaling of a distribution. It has be
used in particular to determine the noise level in time se
data@3,10#.

V. EUCLIDEAN NORM

If the Euclidean norm is used, the contaminated scal
function can be derived assuming power law scaling of
unperturbed distances. The derivation is quite elegant if
Gaussian kernel correlation integralCg(r ), Eq. ~3!, is used.
For the usual hard kernel the algebra is more complica
and the result involves a special function.

A. Gaussian kernel

Diks @4# observes that the Gaussian kernel correlation
tegral can be seen as a convolution of the probability dis
bution m̃(xW ) with a Gaussian of widthr . The noisy distribu-
tion m̃(xW ) itself, however, depends on the true meas
m(xW ) through a convolution with the noise distribution,
Gaussian of widths. Under the assumption thatCg(r )}r a

for the noise-free distribution, it is found in Ref.@4# that

C̃g~r !}
r d

~r 21s2!~d2a!/2 . ~6!

In order to compare to the other approaches let us quote
result in two alternative forms. Differentiation with respe
to r yields

ñg~r !}
r d21

~r 21s2!~d2a!/2

ar 21ds2

r 21s2 . ~7!

The logarithmic derivativeD̃g(r )5@d/(dlnr)#lnC̃g(r) takes a
particularly simple form:

D̃g~r !5
ar 21ds2

r 21s2 . ~8!

The crossover fromD̃g(r )'d for r!s to D̃g(r )'a for
r@s is evident.

B. Hard kernel

For the usual correlation integral, the convolution of t
kernel and the noise distribution cannot be carried out
such an elegant way. However, Smith@2# was able to derive
a formula for the noise contaminated correlation integral
ing local linearizations of the system equations. We will n
repeat here the derivation but quote the final result. Assu
ing C(r )5r a it reads

C̃°~r !5
G„~a11!/2…

G„~d11!/2…
~2s!a2dr dM S d2a

2
,
d12

2
;2

r 2

4s2D ,
~9!

whereM (a,b;z) is the confluent hypergeometric, or Kum
mer’s, function. Here and in the following, thes superscript
indicates the use of the Euclidean norm.

Oltmans and Verheijen@6# analyze the influence o
Gaussian isotropic noise on the interpoint distances, ra
than the integrated distribution. The expression for the s
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276 56THOMAS SCHREIBER
ing function ñ °(r ) of the noisy interpoint distances is ob
tained by combining Eqs.~18! and ~19! of Ref. @6#:

ñ°~r !5
G~a/2!

G~d/2!
a~2s!a2dr d21M S d2a

2
,
d

2
;2

r 2

4s2D .
~10!

Using the recursion relations for Kummer’s function@Eqs.
~13.4.1!–~13.4.7! in Ref. @9##, one finds thatñ °(r ) in Eq.
~10! is indeed the derivative ofC̃°(r ) in Eq. ~9!. This is very
satisfactory since Eq.~9! and Eq.~10! have been derived by
very different means.

Combining Eqs.~9! and ~10! and using Kummer’s trans
formation@Eq. ~13.1.27! in Ref. @9# #, we get quite a compac
expression forD̃°(r ):

D̃°~r !5d
M ~a/2,d/2;r 2/4s2!

M „~a12!/2,~d12!/2;r 2/4s2
…

. ~11!

Kugiumtzis @5# gives a correction formula for the lengt
scaler to be used in the presence of Gaussian noise.C̃(r ) is
then supposed to show the proper scaling with the corre
r 8. The formula is derived by accounting for those poin
which escape from a neighborhood due to the noise. Cer
approximations~namely, exchanging the expectation ope
tor with point counting! are made which assume thatr is at
least of the order ofs. Therefore the implication of the resu
for the present work is less general than Refs.@2,6#. Let us
assume that power law scalingC(r )}r a is restored by the
correction, such that for the measured correlation s
C̃(r )}r 8a holds. Then we can rewrite Eq.~5! in Ref. @5# and
obtain

r5
dC̃4/a1~4d21!~s2C̃2/a1s4!

d~C̃2/a12s2!3/2
. ~12!

Note that Ref.@5# uses thed-scaled Euclidean norm, whic
will be accounted for when the results are compared. Fr
Eq. ~12! we can computeñ. andD̃. as functions ofC̃. The
expressions are lengthy and not very instructive. They
therefore not given here, except for a particular choice od
anda, see Eq.~14! below.

FIG. 1. Double logarithmic plot ofñg(r ) ~solid! and ñ°(r )
~dashed! for d54,a52.6 ~upper two curves! and ford55,a51.4
~lower two curves!.
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VI. COMPARISON

When comparing the different results, we should obse
that the length scales accessed by the different approach
a given value ofr are not quite the same and cannot be ma
exactly equal. For a better comparison, one may want to
kernel functions of the same root mean squared varian
The Gaussian kernel used above has widthA2 while the hard
kernel has width 1/A3. Further, the hard kernel in the max
mum norm covers a hypercube whereas in the Euclid
norm it only covers a sphere. The corresponding resca
would depend on the attractor dimension.

Let us first show exemplary curvesñg(r ) and ñ °(r ) for
the Euclidean norm, which are available analytically for
d and a. Figure 1 contains a double logarithmic plot o
ñ(r ) for d54,a52.6 and ford55,a51.4. In order to cor-
rect for the different kernel widths,ñg(r ) has been shifted
left by A2 and ñ°(r ) right by A3. As expected, the asymp
totics are the same but the crossover region around the n
level is different.

For certain particular~nonfractal! values ofd anda, we
can calculate analytical curves for all three cases forC̃(r )
andD̃(r ). Ford54,a52, we obtain the following formulas
for D̃(r ):

D̃h~r !521
2r

sAp

e2r2/4s2

erf~r /2s!
,

D̃g~r !5
2r 214s2

r 21s2 , D̃°~r !5
2r 2~12e2r2/4s2!

r 224s2~12e2r2/4s2!
,

~13!

Further, the result of Ref.@5# can be used to obtain a para
metric function„r.(C̃),D̃.(C̃)…:

r.~C̃!5
4C̃2115s2C̃115s4

4~C̃12s2!3/2
, ~14!

FIG. 2. Plot in linear scale ofD̃h(r ) ~dotted!, D̃g(r ) ~solid!, and

D̃ °(r ) ~dashed!. Further,D̃.(C̃) is plotted versusr.(C̃) as a para-

metric function ofC̃ ~dashed-dotted!. All curves are computed for

d54,a52. The result derived from Ref.@5#, D̃., coincides with

D̃ °(r ) for large enoughr .
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D̃.~C̃!5
4C̃3123s2C̃2145s4C̃130s6

4C̃3117s2C̃2115s4C̃
.

The curves are shown in Fig. 2. Again, the different ker
widths are accounted for. On a two dimensional point set,
ratio of the volumes covered by a box of radiusr and a circle
of the same radius is 4/p. ThereforeD̃h(r ) is shifted left by
4A2/p. Since D̃.(C̃) has been calculated with th
d-scaled Euclidean norm, the curve has been shifted righ
an additional factor ofAd52 for comparison. Note tha
D̃.(C̃) is only supposed to be valid forr.s, and, in fact,
diverges forC̃→0 ~at finiter ). For large enoughr , however,
the agreement with the general resultD̃°(r ) is very good,
as expected.

VII. CONCLUSION

We have brought together the results of different a
proaches which compute the influence of Gaussian nois
the correlation integral. Although different norms and diffe
ent definitions of the correlation integral were used, the
sulting curves are very similar. This is quite obvious for t
asymptotic behavior for length scales much larger and m
smaller than the noise level but it is also found for the cro
over region. For the Euclidean case, the results of Refs.@2,6#
coincide and the formula which can be derived from Ref.@5#
indeed converges to the more general result of Refs.@2,6# for
large enoughr .
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As we have mentioned before, the length scales canno
compared directly for the different approaches. In particu
the reasoning in this paper does not take into account
scaling is both limited by noise from below and by the fin
extent of the set from above. Thus neither the formulas
the figures allow for a definitive statement as to how stron
the different ways of estimating the correlation integral a
affected by noise.

All approaches allow for the estimation of the noise lev
Refs.@2,4,6# allow for the simultaneous determination of th
noise level and the scaling exponent by a nonlinear func
fit. While in the case of the usual hard kernel the function
be fitted is rather complicated, the computation of the Gau
ian kernel correlation integral from a time series is mo
tedious and computer time consuming. Reference@5# re-
quires an estimate of the noise variance but then yield
convenient correction scheme forC(r ). The result@3# for the
maximum norm allows for the determination of the noi
level but not for a direct correction of a dimension estima
An attractive alternative is to perform a nonlinear noise
duction step@11# in order to recover the correct scaling b
havior.
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